693f - Key/Specs/Resources/Samples/Tech/Doc/Contact

ESCALAB QXi X-ray Photoelectron Spectrometer Microprobe

Meet your demands for increased analytical performance and flexibility with the Thermo Scientific™ ESCALAB™ QXi X-ray Photoelectron Spectrometer (XPS) Microprobe, which combines high spectral sensitivity and resolution with quantitative imaging and multi-technique capabilities. 

The ESCALAB QXi XPS Microprobe is an expandable and optimized multi-technique instrument with unparalleled flexibility and configurability. It is extremely sensitive, producing high-quality spectra in seconds. System control, data acquisition, processing, and reporting are seamlessly integrated in the powerful Thermo Scientific Avantage Data System. The cutting-edge technology, driven by intuitive software, guarantees world-class results and productivity. The ESCALAB QXi XPS Microprobe, with its unique dual detector system, also delivers superb XPS imaging with excellent spatial resolution. 

Video Player is loading.
Current Time 0:00
Duration 1:48
Loaded: 0.00%
Stream Type LIVE
Remaining Time 1:48
 
1x
    • Chapters
    • descriptions off, selected
    • captions off, selected
    • en (Main), selected

    Thermo Scientific ESCALAB QXi Microprobe Auto Sample Transfer

     

    ESCALAB QXi X-ray Photoelectron Spectrometer Microprobe


    Monochromated XPS

    Monochromated XPS

    The twin-crystal, micro-focusing monochromator has a 500 mm Rowland circle, uses an Al anode (or a dual Al and Ag anode with the dual monochromator option), and allows you to select any sample spot size ranging from 200 µm to 900 µm. 

    Flood electron source

    Flood electron source

    An electron source, co-axial with the analyzer input lens, is used for charge compensation when analyzing non-conducting samples with the monochromatic X-ray source, while a second flood source produces both low-energy ions to assist in providing effective charge compensation and low-energy electrons when the magnetic lens is not in use.

    Lens and analyzer

    Lens and analyzer

    The lens and analyzer system on the ESCALAB QXi XPS Microprobe is optimized for both spectroscopy and for parallel imaging; the single analyzer path means that the same instrument parameters (e.g., pass energy) can be used for both spectroscopy and imaging. 

    Detectors

    Detectors

    The ESCALAB QXi XPS Microprobe is fitted with two detector systems: one optimized for spectroscopy, consisting of an array of six-channel electron multipliers, and one for parallel imaging, consisting of a pair of channel plates and a continuous position-sensitive detector. 

    Ion gun

    Ion gun 

    The ESCALAB QXi XPS Microprobe has two options for rapid, high-resolution depth profiling: the standard EX06 ion gun, which is optimized for monatomic ion sputtering and ion scattering spectroscopy; and the optional monatomic and gas cluster ion source, MAGCIS, which is capable of monatomic ion profiling, cluster ion profiling, and ion scattering spectroscopy.

    Digital control

    Digital Control

    All analytical functions are controlled from the Windows Software-based Avantage data system, meaning that the entire analysis process can be performed remotely, if required. 

    Alignment

    Alignment and calibration

    A standards block, which has samples of copper, silver, and gold, can be used for assessing sensitivity, setting the linearity of the analyzer energy scale, calibrating the ion source, aligning the X-ray monochromator, and determining the transmission function of the analyzer. 

    Sample alignment

    Sample alignment

    All axes of movement on the sample stage are controlled by the Avantage Data System, and a high-resolution digital video camera is fitted to the instrument and is accurately aligned with the analysis position.

    Sample manipulator

    Sample manipulator

    The computer-controlled, 5-axis, high-precision translator (HPT) allows accurate sample alignment for analysis. When coupled with the new automated sample loading system, it can be used to automatiucally exchange sample holders and run queued experiments.

    Vacuum system

    Vacuum system

    The analysis chamber is constructed from 5 mm-thick mu-metal to maximize the efficiency of the magnetic shielding, and the chamber is pumped using both a turbomolecular pump and a titanium sublimation pump, allowing the analysis chamber to achieve a vacuum better than 5 x 10-10 mbar.

    Preparation chambers

    Preparation chambers 

    The standard Preploc chamber, which is a combined sample entry lock and preparation chamber, has ports that accommodate a variety of sample preparation devices, such as heating/cooling probes, ion guns, high-pressure gas cells, sample parking, and gas admission. 

    Connectivity

    Connectivity

    Measurement coordinates can be imported into Avantage Data System from dedicated microscopy systems using Thermo Scientifc Maps Software for even faster identification of measurement areas. XPS spectroscopy and imaging data can be added into Maps Software to allow direct comparison of surface chemistry and structural information.


    Specifications

    Style Sheet for Products Table Specifications
    Monochromated X-ray source
    • Micro-focused Al K-Alpha source or optional micro-focused dual-anode Al K-Alpha and Ag L-Alpha source
    Analyze
    • 180°, double-focusing, bi-polar hemispherical analyzer with dual detector system for spectroscopy and imaging
    Ion source
    • Monatomic EX06 ion source supplied as standard; option for MAGCIS dual mode ion source
    Vacuum system
    • Two turbo molecular pumps for entry and analysis chambers, with rotary pumps or oil-free backing pumps; auto-firing, 3-filament titanium sublimation pump for analysis chamber
    Sample stage
    • 5-axis sample stage with sample heating and cooling capabilities
    • Optional fully automated sample exchange from load-lock parking post to analysis chamber
    Included standard analysis techniques
    • X-ray photoelectron spectroscopy (XPS)
    • Reflected electron energy loss spectroscopy (REELS) 
    • Ion scattering spectroscopy (ISS) 
    Optional analysis techniques
    • UV lamp for UV photoelectron spectroscopy (UPS) 
    • Non-monochromated X-ray source for HAXPES 
    • Field emission electron source for Auger electron spectroscopy (AES) and SEM 
    • Inverse photoemission spectroscopy (IPES) 
    • EDS detector 
    Optional accessories
    • Glove box, vacuum transfer vessel, EX03 broad beam ion source, platter camera 
    Sample preparation options
    • Heat/cool sample holder, additional preparation chamber, bakeable 3-gas admission manifold, fracture stage, sample parking facility 
    Style Sheet for Komodo Tabs

    Find your ideal XPS instrument

    Choosing the right XPS solution for your research is no easy feat. Take three minutes to fill out our XPS Product Selector and discover which X-ray photoelectron spectrometer is the most suitable for your surface analysis requirements.

    Product Selector

    Surface Analysis Learning Center

    The chemistry of the surface of a material, or at the interfaces of layers, determines how a material behaves. Our surface analysis references and resources can help you engineer desired properties or better understand materials when they do not perform as expected.

    XPS Learning center


    Resources

    ESCALAB QXi XPS Webinar

    Watch on-demand: new ESCALAB QXi XPS Applications Demonstration Webinar

    Watch this webinar to:

    • Learn how you can perform fully automated multi-technique surface analysis from a wide range of sample types, including metals, polymers, oxides, and battery materials.
    • Watch the ESCALAB QXi Microprobe in action.

    Register to watch

    Webinar: Thermo Scientific ESCALAB Xi+ Microprobe
    Learn more about the instrument, its features and the way it can enhance your surface analysis!
    Video Player is loading.
    Current Time 0:00
    Duration 8:35
    Loaded: 0.00%
    Stream Type LIVE
    Remaining Time 8:35
     
    1x
      • Chapters
      • descriptions off, selected
      • captions off, selected
      • en (Main), selected
        1. Now Playing
          Up NextWebinar: Thermo Scientific ESCALAB Xi+ Microprobe

          Learn more about the instrument, its features and the way it can enhance your surface analysis!

        2. Now Playing
          Up NextPart 1- Understanding Surface Chemistry with Avantage Software

          Understanding Surface Chemistry with Avantage Software

        3. Now Playing
          Up NextPart 2 - Understanding XPS images and depth profiles with Avantage Software

          By watching the webinar, you will learn how to: Use the right tools to understand multi-level data sets, such as depth profiles and images. Apply multi-variate techniques (such as PCA) to understand XPS images. Peak fit depth profile data sets to

        4. Now Playing
          Up NextThe Surface Analysis Toolbox Combining XPS with ISS, REELS, AES, UPS, and Raman in a workflow

          This webinar will introduce these additional techniques and show how they can be used with XPS to build comprehensive understanding of the surfaces of materials.

        5. Now Playing
          Up NextMulti-technique and Complementary Analysis session (part 2) of the Ignite Surface Analysis Virtual Scientific Conference

          The speakers Roland Barbosa (Covalent Metrology), Paul Mack and Herman Lemmens (Thermo Fisher Scientific) give presentations on multi-technique and complementary analysis.

      ESCALAB QXi XPS Webinar

      Watch on-demand: new ESCALAB QXi XPS Applications Demonstration Webinar

      Watch this webinar to:

      • Learn how you can perform fully automated multi-technique surface analysis from a wide range of sample types, including metals, polymers, oxides, and battery materials.
      • Watch the ESCALAB QXi Microprobe in action.

      Register to watch

      Webinar: Thermo Scientific ESCALAB Xi+ Microprobe
      Learn more about the instrument, its features and the way it can enhance your surface analysis!
      Video Player is loading.
      Current Time 0:00
      Duration 8:35
      Loaded: 0.00%
      Stream Type LIVE
      Remaining Time 8:35
       
      1x
        • Chapters
        • descriptions off, selected
        • captions off, selected
        • en (Main), selected
          1. Now Playing
            Up NextWebinar: Thermo Scientific ESCALAB Xi+ Microprobe

            Learn more about the instrument, its features and the way it can enhance your surface analysis!

          2. Now Playing
            Up NextPart 1- Understanding Surface Chemistry with Avantage Software

            Understanding Surface Chemistry with Avantage Software

          3. Now Playing
            Up NextPart 2 - Understanding XPS images and depth profiles with Avantage Software

            By watching the webinar, you will learn how to: Use the right tools to understand multi-level data sets, such as depth profiles and images. Apply multi-variate techniques (such as PCA) to understand XPS images. Peak fit depth profile data sets to

          4. Now Playing
            Up NextThe Surface Analysis Toolbox Combining XPS with ISS, REELS, AES, UPS, and Raman in a workflow

            This webinar will introduce these additional techniques and show how they can be used with XPS to build comprehensive understanding of the surfaces of materials.

          5. Now Playing
            Up NextMulti-technique and Complementary Analysis session (part 2) of the Ignite Surface Analysis Virtual Scientific Conference

            The speakers Roland Barbosa (Covalent Metrology), Paul Mack and Herman Lemmens (Thermo Fisher Scientific) give presentations on multi-technique and complementary analysis.

        Samples


        Battery Research

        Battery development is enabled by multi-scale analysis with microCT, SEM and TEM, Raman spectroscopy, XPS, and digital 3D visualization and analysis. Learn how this approach provides the structural and chemical information needed to build better batteries.

        Learn more ›


        Metals Research and Characterization

        Effective production of metals requires precise control of inclusions and precipitates. Our automated tools can perform a variety of tasks critical for metal analysis including; nanoparticle counting, EDS chemical analysis and TEM sample preparation.

        Learn more ›


        Polymers Research

        Polymer microstructure dictates the material’s bulk characteristics and performance. Electron microscopy enables comprehensive microscale analysis of polymer morphology and composition for R&D and quality control applications.

        Learn more ›


        Geological Research

        Geoscience relies on consistent and accurate multi-scale observation of features within rock samples. SEM-EDS, combined with automation software, enables direct, large-scale analysis of texture and mineral composition for petrology and mineralogy research.

        Learn more ›


        Oil and Gas

        As the demand for oil and gas continues, there is an ongoing need for efficient and effective extraction of hydrocarbons. Thermo Fisher Scientific offers a range of microscopy and spectroscopy solutions for a variety of petroleum science applications.

        Learn more ›


        Nanoparticles

        Materials have fundamentally different properties at the nanoscale than at the macroscale. To study them, S/TEM instrumentation can be combined with energy dispersive X-ray spectroscopy to obtain nanometer, or even sub-nanometer, resolution data.

        Learn more ›


        Forensics

        Micro-traces of crime scene evidence can be analyzed and compared using electron microscopy as part of a forensic investigation. Compatible samples include glass and paint fragments, tool marks, drugs, explosives, and GSR (gunshot residue).

        Learn more ›


        Catalysis Research

        Catalysts are critical for a majority of modern industrial processes. Their efficiency depends on the microscopic composition and morphology of the catalytic particles; EM with EDS is ideally suited for studying these properties.

        Learn more ›


        Fibers and Filters

        The diameter, morphology and density of synthetic fibers are key parameters that determine the lifetime and functionality of a filter. Scanning electron microscopy (SEM) is the ideal technique for quickly and easily investigating these features.

        Learn more ›


        2D Materials

        Novel materials research is increasingly interested in the structure of low-dimensional materials. Scanning transmission electron microscopy with probe correction and monochromation allows for high-resolution two-dimensional materials imaging.

        Learn more ›


        Automotive Materials Testing

        Every component in a modern vehicle is designed for safety, efficiency, and performance. Detailed characterization of automotive materials with electron microscopy and spectroscopy informs critical process decisions, product improvements, and new materials.

        Learn more ›

         

        Techniques

        Multi-technique surface analysis workflow

        To meet the need for extensive characterization of surfaces, we have established multi-technique workflows based on using either the Thermo Scientific ESCALAB CXi XPS Microprobe or the Thermo Scientific Nexsa Surface Analysis System. These instruments are designed as multi-technique workstations to provide comprehensive analyses in a timely and efficient manner. 

        Learn more ›

        X-Ray Photoelectron Spectroscopy

        X-ray photoelectron spectroscopy (XPS) enables surface analysis, providing elemental composition as well as the chemical and electronic state of the top 10 nm of a material. With depth profiling, XPS analysis extends to compositional insight of layers.

        Learn more ›

        Multi-technique surface analysis workflow

        To meet the need for extensive characterization of surfaces, we have established multi-technique workflows based on using either the Thermo Scientific ESCALAB CXi XPS Microprobe or the Thermo Scientific Nexsa Surface Analysis System. These instruments are designed as multi-technique workstations to provide comprehensive analyses in a timely and efficient manner. 

        Learn more ›

        X-Ray Photoelectron Spectroscopy

        X-ray photoelectron spectroscopy (XPS) enables surface analysis, providing elemental composition as well as the chemical and electronic state of the top 10 nm of a material. With depth profiling, XPS analysis extends to compositional insight of layers.

        Learn more ›

        Style Sheet to change H2 style to p with em-h2-header class
        Style Sheet to change H3 to p with em-h3-header class
        Style Sheet to change H2 style to p with em-h2-header class

        Contact us

        Style Sheet for Support and Service footer
        Style Sheet for Fonts
        Style Sheet for Cards