FluoSpheres™ Carboxylate-Modified Microspheres
FluoSpheres™ Carboxylate-Modified Microspheres
Invitrogen™

FluoSpheres™ Carboxylate-Modified Microspheres

Achieve the brightest fluorescence with Carboxylate-Modified FluoSphere Microspheres, available in different colors and particle sizes.
Have Questions?
Change viewbuttonViewtableView
Catalog NumberDiameter (Metric)ColorExcitation/EmissionQuantity
F8789
also known as F-8789
0.04 μmDark Red660/680 nm1 mL
F88030.1 μmYellow-Green505/515 nm10 mL
F88161.0 μmCrimson625/645 nm2 mL
F88231.0 μmYellow-Green505/515 nm10 mL
F88010.1 μmRed580/605 nm10 mL
F88110.2 μmYellow-Green505/515 nm10 mL
F88070.2 μmDark Red660/680 nm2 mL
F107200.04 μmYellow-Green, Orange, Red, Dark Red505/515, 540/560, 580/605, 660/680 nm1 mL/each
F208810.2 μmOrange365/610 nm2 mL
F8783
also known as F-8783
0.02 μmDark Red660/680 nm2 mL
F87860.02 μmRed580/605 nm10 mL
F8795
also known as F-8795
0.04 μmYellow-Green505/515 nm1 mL
F88130.5 μmYellow-Green505/515 nm10 mL
F88201.0 μmOrange540/560 nm10 mL
F88252.0 μmNile Red535/575 nm2 mL
F88272.0 μmYellow-Green505/515 nm2 mL
F8781
also known as F-8781
0.02 μmBlue365/415 nm10 mL
F8782
also known as F-8782
0.02 μmCrimson625/645 nm2 mL
F87840.02 μmNile Red535/575 nm10 mL
F87870.02 μmYellow-Green505/515 nm10 mL
F8792
also known as F-8792
0.04 μmOrange540/560 nm1 mL
F87930.04 μmRed580/605 nm1 mL
F87940.04 μmRed-Orange565/580 nm1 mL
F87970.1 μmBlue350/440 nm10 mL
F87990.1 μmInfrared715/755 nm1 mL
F8800
also known as F-8800
0.1 μmOrange540/560 nm10 mL
F88050.2 μmBlue365/415 nm10 mL
F88060.2 μmCrimson625/645 nm2 mL
F88090.2 μmOrange540/560 nm10 mL
F88100.2 μmRed580/605 nm10 mL
F88120.5 μmRed580/605 nm10 mL
F88141.0 μmBlue365/415 nm10 mL
F88151.0 μmBlue350/440 nm10 mL
F88191.0 μmNile Red535/575 nm10 mL
F88211.0 μmRed580/605 nm10 mL
F8824
also known as F-8824
2.0 μmBlue365/415 nm2 mL
F88262.0 μmRed580/605 nm2 mL
Catalog number F8789
also known as F-8789
Price (EUR)
698,00
Each
-
Add to cart
Diameter (Metric):
0.04 μm
Color:
Dark Red
Excitation/Emission:
660/680 nm
Quantity:
1 mL
Recurring order eligible. Learn more »
Price (EUR)
698,00
Each
Add to cart
Ask our AI about this Product

Easily perform flow cytometry, microscopy, HTS, HCS, immunoassay, and other laboratory applications using our extensive selection of FluoSpheres Carboxylate-Modified Microspheres. FluoSphere beads can be used in passive adsorption or active, covalent coupling of proteins, nucleic acids, and biomolecules for particle capture applications. FluoSphere microspheres are loaded with proprietary fluorescent dyes, making them the brightest microspheres available.

Visualize the brightest fluorescence for laboratoy applications including fluorescence microscopy, flow cytometry, HTS, HCS, and cell tracing with our Carboxylate-Modified FluoSphere Microspheres, which are manufactured from polystyrene microspheres and loaded with different proprietary dyes. Using specialized staining methods enables all of the fluorescent dye molecules to be contained inside each polystyrene microsphere instead of on the bead's surface. This protective environment within the bead shields the dye from detrimental environmental effects, such as photobleaching. Our carboxylate-modified microspheres are coated with a hydrophilic polymer containing multiple carboxylic acids for covalent attachment of ligands. A range of particle sizes is available for different research uses and experiments.
For Research Use Only. Not for use in diagnostic procedures.
Specifications
Excitation/Emission660/680 nm
Product LineFLUOSPHERES™
Quantity1 mL
Surface ModificationCarboxylate
ColorDark Red
Diameter (Metric)0.04 μm
For Use With (Application)Fluorescence Microscopy
MaterialPolystyrene
Product TypeCarboxylate-Modified Microsphere
Unit SizeEach
Contents & Storage
Store in refrigerator (2–8°C) and protect from light.
Have questions about this product? Ask our AI assisted search.
This is an AI-powered search and may not always get things right. You can help us make it better with a thumbs up or down on individual answers or by selecting the “Give feedback" button. Your search history and customer login information may be retained by Thermo Fisher and processed in accordance with our Privacy Notice.

Figures

Fluorescence spectra

Fluorescence spectra

Customers who viewed this item also viewed



Documents & Downloads

Certificates

Lot #Certificate TypeDateCatalog Number(s)
3154551Certificate of AnalysisJun 20, 2025F8783
3223927Certificate of AnalysisJun 20, 2025F8813
3193695Certificate of AnalysisJun 20, 2025F8821
3193696Certificate of AnalysisJun 17, 2025F8810
3154554Certificate of AnalysisMay 04, 2025F8826
5 results displayed, search above for a specific certificate

Safety Data Sheets

Frequently asked questions (FAQs)

The CML beads have a high density of carboxyl groups at the surface. The surface layer is quite hydrophilic and at the appropriate pH (pH>5), are charged; due to electrostatic repulsion, this type of surface is 3-dimensional and may be considered analogous to the fuzz on a tennis ball.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

The smaller the microspheres, the greater the propensity to aggregate. But the aggregation is not irreversible. Sonicate in a bath sonicator or vortex to disperse, just prior to use. You can also add a small concentration of Tween-20 or Triton X-100 (unless you are using them in a live-cell system).

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

Use of a bath sonicator is recommended to help break up any aggregated microspheres. The foaming is from Tween-20, which is in the stock solution to help prevent aggregation. It is normal and expected to see bubbles from this. Do not use a probe sonicator, which would cause damage to the microspheres (as well as much more bubbling).

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

The warranty period for FluoSpheres microspheres is 1-year from the date of shipment.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

Centrifugation is not an effective way to collect smaller microspheres; many particles remain in the solution even if you can visualize a small pellet. For beads less than 1 µm in diameter, we recommend washing by either:

Cross-flow filtration, as these particles have a very high compression modulus and can withstand high g-forces without risk of harm or dialysis with a 500 kDa MWCO
Note: Microspheres greater than 1 µm in diameter can be centrifuged at 1,300 rpm.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

Citations & References (124)

Citations & References
Abstract
Altered membrane dynamics of quantum dot-conjugated integrins during osteogenic differentiation of human bone marrow derived progenitor cells.
Authors:Chen H,Titushkin I,Stroscio M,Cho M
Journal:Biophysical journal
PubMed ID:17114225
Functionalized quantum dots offer several advantages for tracking the motion of individual molecules on the cell surface, including selective binding, precise optical identification of cell surface molecules, and detailed examination of the molecular motion without photobleaching. We have used quantum dots conjugated with integrin antibodies and performed studies to quantitatively ... More
Tuftsin binds neuropilin-1 through a sequence similar to that encoded by exon 8 of vascular endothelial growth factor.
Authors:von Wronski MA,Raju N,Pillai R,Bogdan NJ,Marinelli ER,Nanjappan P,Ramalingam K,Arunachalam T,Eaton S,Linder KE,Yan F,Pochon S,Tweedle MF,Nunn AD
Journal:The Journal of biological chemistry
PubMed ID:16371354
Live imaging of lymphatic development in the zebrafish.
Authors:Yaniv K,Isogai S,Castranova D,Dye L,Hitomi J,Weinstein BM
Journal:Nature medicine
PubMed ID:16732279
Cell lines as candidate reference materials for quality control of ERBB2 amplification and expression assays in breast cancer.
Authors:Xiao Y, Gao X, Maragh S, Telford WG, Tona A,
Journal:Clin Chem
PubMed ID:19443566
Human epidermal growth factor receptor 2 (HER2) is an important biomarker whose status plays a pivotal role in therapeutic decision-making for breast cancer patients and in determining their clinical outcomes. Ensuring the accuracy and reproducibility of HER2 assays by immunohistochemistry (IHC) and by fluorescence in situ hybridization (FISH) requires a ... More
Morphology and dynamics of clathrin/GGA1-coated carriers budding from the trans-Golgi network.
Authors:Puertollano R, van der Wel NN, Greene LE, Eisenberg E, Peters PJ, Bonifacino JS
Journal:Mol Biol Cell
PubMed ID:12686608
'Sorting of transmembrane proteins and their ligands at various compartments of the endocytic and secretory pathways is mediated by selective incorporation into clathrin-coated intermediates. Previous morphological and biochemical studies have shown that these clathrin-coated intermediates consist of spherical vesicles with a diameter of 60-100 nm. Herein, we report the use ... More
124 total citations

Share catalog number, name or link

1x1 image pixel for data collection