iCE™ 3500 AAS Atomabsorptionsspektrometer
iCE™ 3500 AAS Atomabsorptionsspektrometer
Thermo Scientific™

iCE™ 3500 AAS Atomabsorptionsspektrometer

Das duale Flammen- und Graphitrohr-AA-System iCE™ 3500 AAS von Thermo Scientific™ bietet das Beste aus allen Bereichen der Atomabsorption und zeichnet sich durch eine herausragende Elementanalyse aus.
Have Questions?
Ansicht ändernbuttonViewtableView
KatalognummerTyp
942350023500Atomabsorptionsspektrometer
942350023501Atomabsorptionsspektrometer
Katalognummer 942350023500
Preis (EUR)
-
Angebot anfordern
Typ:
Atomabsorptionsspektrometer
Ask our AI about this Product

Das Thermo Scientific™ iCE™ 3500 AAS bietet unübertroffene Leistung, Flexibilität und Einfachheit. Das innovative Doppelatomisatordesign ermöglicht ein sicheres, softwaregesteuertes Umschalten zwischen Flammen- und Ofenanalyse mit nur einer Spiegelbewegung. Die hochpräzise Doppelstrahloptik sorgt in Kombination mit einem Echelle-Monochromator für niedrige Nachweisgrenzen und für eine langfristige Stabilität der Analysen. Die einzigartige Quadline Deuteriumhintergrundkorrektur mit garantierter Leistung ist standardmäßig im Lieferumfang enthalten. Der Flammenatomisator verfügt über einen 50-mm-Titanbrenner mit verbesserter Feststoffkapazität, um die Effizienz und Genauigkeit der Flammenanalyse zu erhöhen. Der Ofenatomisator ist mit GFTV ausgestattet – Dieses Ofensichtsystem, verbessert die Effizienz und vereinfacht die Methodenentwicklung, indem es ein Echtzeitvideo der Innenseite der Küvette in hoher Auflösung bietet.

Maximierung der Produktivität

Dieses kombinierte Flammen- und Graphitrohr-AAS-System bietet eine Komplettlösung für Labors, die mit herausfordernden Nachweisgrenzen konfrontiert werden und eine hohe Probendurchsatzkapazität benötigen.
  • Software-gesteuerte Umschaltung von der Flammen- zur Graphitrohranalyse, ohne dass die Anwesenheit eines Bedieners auch nur im Raum erforderlich wäre
  • Führen Sie eine unbeaufsichtigte, automatisierte Analyse mit vollständig konfigurierbarem Autosampler durch
  • Die SOLAAR Software bietet eine hervorragende Unterstützung mit Assistenten, Optimierungsroutinen und Steuerungen für die automatisierte Ausführung
  • Das Karussell mit automatischer Ausrichtung ist zur Maximierung des Lichtdurchsatzes mit sechs Lampen ausgestattet

Steigern Sie die Kosteneffizienz

Optimieren Sie die Kosteneffizienz mithilfe der zur Kostenersparnis entwickelten Hardware und Zubehör.
  • Innovative Küvetten mit verlängerter Nutzungsdauer (Extended Lifetime Cuvettes, ELC) zur Senkung der Verbrauchsmaterialkosten können für Tausende von Impulsen genutzt werden
  • Führen Sie Analysen mit nur Mikrolitern der Probe durch, um den Verbrauch von Verbrauchsmaterial zu senken
  • Gasströme mit intelligenter Softwaresteuerung begrenzen den Gasverbrauch auf ein Minimum
  • GFTV-Anzeige in Echtzeit ermöglicht eine präzise Analyse – immer und immer wieder

Lassen Sie sich von der herausragenden Leistung und Flexibilität begeistern

Das iCE3500 AAS bietet Ihnen all die Innovationen, Leistung und Anwenderfreundlichkeit, die Sie von Thermo Scientific Instrumenten erwarten.
  • Das einzigartige duale Design des Atomisators bietet einen zweiten Probenraum, in dem das Graphitrohr dauerhaft ausgerichtet und einsatzbereit bleiben kann
  • Standardmäßige D2-Hintergrundkorrektur für die Flammen- und Graphitrohranalyse
  • Zeeman-Hintergrundkorrektur für die Arbeit mit dem Graphitrohr aus dem optionalen Thermo Scientific™ GFS35Z™ Graphitrohr-Upgrade
  • Doppelstrahloptik mit einem Doppelmonochromator, bestehend aus einem Echelle-Gitter und einem optischen Gitter
Specifications
HintergrundkorrekturGarantierte Quadline Deuterium- oder AC Zeeman-Systeme
FlammenatomisatorUniversalsystem (verwendet einen 50 mm gerippter Titanbrenner)
Ofenatomisator-OptionGFS35 oder GFS35(Z) kombiniertes Modul
OfenkamerasystemAls Standard
GasmanagementAutomatische binäre Steuerung
Lampenkarussell6 Leuchten-Code, selbstausrichtend
MonochromatorEschelle-Typ
OptikDoppelstrahl
PhotoelektronenvervielfacherBreiter Bereich (180 bis 900 nm)
TypAtomabsorptionsspektrometer
Unit SizeEach
Have questions about this product? Ask our AI assisted search.
Generating response
This is an AI-powered search and may not always get things right. You can help us make it better with a thumbs up or down on individual answers or by selecting the “Give feedback" button. Your search history and customer login information may be retained by Thermo Fisher and processed in accordance with our Privacy Notice.

Los clientes que vieron este artículo también vieron



Häufig gestellte Fragen (FAQ)

Segmented flow sample introduction systems are a very helpful tool to increase the productivity in your laboratory. Such devices work with a valve system that enables fast uptake of the sample to the plasma, and minimize the wash out times between different samples. Therefore, the time required for analysis can be shortened considerably. An example for such a system is the sprint valve system available on the Thermo Scientific iCAP 7600 ICP-OES (https://www.thermofisher.com/order/catalog/product/842320076121).

Slurry nebulization is more commonly used in environmental testing applications. In principle, slurry nebulization can be used for pharmaceutical testing and there have been studies done on this. Obviously particle size is a key factor here - the smaller the particles the better. However, it is also worth pointing out that the method preferred by USP is microwave digestion.

The parameters BEC, LOD, and LOQ are frequently used to describe the detection capabilities of an analytical instrument. The acronym BEC abbreviates the parameter blank equivalent concentration. This value refers to the “apparent concentration”, and is composed of the contamination level in the blank, any residual interference signal, and the instrument background (from the detection system). The parameter instrumental detection limit (IDL, often referred to as Limit of Detection, LOD) is defined as the limit of detection that can be achieved by the instrument used. This amount is typically defined as a quantity that gives a distinguishable signal in the detection system. The common definition for the IDL is based upon the standard deviation (LOD = 3.3 x standard deviation of the regression line of calibration curve) of a blank sample measured in the beginning of a calibration curve, or a minimum signal to noise ratio of 3:1. Both parameters, BEC and IDL are automatically calculated by Thermo Scientific Qtegra Intelligent Scientific Data Solution (ISDS) platform software (https://www.thermofisher.com/order/catalog/product/IQLAAEGABSFAOVMBCZ). In contrast, on the IDL, the parameter method detection limit (MDL) includes the extent of all dilution steps carried out during the sample preparation. The MDL is typically based upon a blank solution that has been prepared according to the preparation procedure that is being used to prepare all the samples. In situations where there is no sample preparation or if the preparation involves a single dilution step, MDLs might be calculated based on the standard deviation of a low level standard. MDL concentrations are always more conservative than IDL concentrations.

If samples are in solid form, the dilution incurred will be dictated by the digestion procedure being used to prepare the sample for analysis. If samples are being analyzed in their native form or after simple dilution, there may be more flexibility in the dilution factor used during preparation. Regardless of the sample's original form, the sample matrix must contain a tolerable level of dissolved solids prior to introducing it into the instrument. If an ICP-MS is being used for analysis, the sample matrix should contain 0.2% TDS or, if no special configuration for the sample introduction system is used (e.g., utilizing AGD).

Internal standards are used in many applications to correct for potential drifts in instrumental sensitivity over time or changes in the sample matrix. The selection of a suitable internal standard should include the following aspects: - The internal standard should have a first ionization potential similar to the analyte, and should have a similar mass as the analyte.
- The internal standard must not be part of the sample.
- It should not generate or be affected by spectral interferences.
- It should be at a low and uniform (preferably zero) concentration in all samples.

Although ICP-MS is a technique considered by some to be relatively robust with respect to matrix effects, in reality, matrix effects do commonly exist and the use of internal standards is standard practice. Internal standards also help account for changes in the transport efficiency of the sample through aerosol.

Geben Sie die Katalognummer, den Namen oder Link frei.

1x1 image pixel for data collection