clear search
Search
Search Suggestions
Recent searches Clear History
Contact Us

Whole Allergen

f215 Lettuce

f215 Lettuce Scientific Information

Type:

Whole Allergen

Display Name:

Lettuce

Family:

Asteraceae (Compositae)

Latin Name:

Lactuca sativa

Other Names:

Lettuce, Garden lettuce

Route of Exposure

Probably the world’s most widely used salad vegetable, Lettuce is thought to have originated in the Mediterranean region in the form of Prickly lettuce. It is recorded as having been served in Persia in 400 BC.

Annual and biennial Lettuce is cultivated in many parts of the world for its edible leaves. Of the many varieties, basic forms have been classified as follows: heading or head varieties, cutting or leaf varieties, and Cos or Romaine. A fourth, very minor type, is the so-called Stem, Celery or Stalk Lettuce.

Lettuce grows in cultivated beds. Its most common use – as leaves, but sometimes also as spouted seeds – is in salads and sandwiches, but it may also appear in soups and stews. Edible oil is obtained from the tiny seeds, but extraction of the oil on any scale would not be feasible.

The sap of the plant contains lactucarium, which is used in medicine and folk medicine for its anodyne, antispasmodic, digestive, galactogogue, diuretic, hypnotic, narcotic, sedative, anaphrodisiac, carminative, emollient, febrifuge, hypoglycaemic, and parasiticide properties. Lactucarium has the effects of a feeble opium, but without tendency of opium to cause digestive upsets; nor is lactucarium addictive. It is taken internally in the treatment of insomnia, anxiety, neuroses, hyperactivity in children, dry coughs, whooping cough, rheumatic pain, etc. The sap has also been applied externally in the treatment of warts. Even normal doses can cause drowsiness, while excess doses cause restlessness, and overdoses can cause death through cardiac paralysis.

Clinical Relevance

Allergen description

Four protein bands with molecular weights of 50, 43, 39 and 16 kDa have been detected in Lettuce, and these exhibited IgE-binding properties (1). A second study reported detecting 14 allergens in Iceberg lettuce, with weights between 13 and >113 kDa (2). A 42-year-old female presented with widespread erythema and a subsequent episode of anaphylaxis after ingesting “Tudela” lettuce hearts (Lactuca sativa var.); serum from this patient revealed several bands, predominantly in the range of 15–65 kDa (3). Researchers have reported predominant reactivity to a protein of 42-48 kDa (4-6).

The following allergen has been characterised:

  • Lac s 1, a 9 kDa lipid transfer protein (7-8).

Two Lac s 1 isoforms were identified, with an amino-acid identity of 62% to each other, up to 66% to Pru p 3 from Peach, and 72% to the N-terminal peptide of the London plane pollen LTP Pla a 3. The prevalence of IgE binding to nLac s 1 was 90%, as shown in immunoblotting experiments with Lettuce extract (8).

No differences in the protein profiles of several Lettuce varieties (Chicory, Butterhead, Iceberg, [mini]-Romaine, Frisée) were found, or between younger (inner) and older (outer) leaves, but the authors could not exclude slight differences in the level of LTP accumulation in the leaves (8).

IgE binding to a 24 kDa protein and HMW proteins (> 50 kDa) was due to cross-reactive carbohydrate determinants (CCDs) (8).

Potential Cross Reactivity

An extensive cross-reactivity among the different individual species of the genus could be expected, as well as to a certain degree among members of the family Asteraceae (9).

A patient allergic to Chicory reported reactions to botanically related Endive (Cichorium endivia) and Lettuce (Lactuca sativa). No cross-reactivity was found with pollen from Mugwort, a member of the same family (6). This is contradicted by a report on subjects allergic to Artemisia, who appeared to be at a higher risk of concomitant sensitisation to various foods, including Lettuce. A common allergen may be responsible (10). Four patients with occupational contact dermatitis to Lettuce were shown to be cross-reactive with endive (11).

Lettuce contains a lipid transfer protein (Lac s 1), which may result in cross-reactivity with other lipid transfer protein-containing foods (12).

Lac s 1 was shown to have a high amino acid sequence identity with other lipid transfer proteins, from Peach and Cherry, among others. A clear partial cross-reactivity was observed between Lettuce LTP and London plane tree- (Platanus) pollen extract (7). Although a partial IgE cross-reactivity between Lac s 1 and Platanus pollen exists, a more pronounced cross-reactivity occurs with the LTPs from the Rosaceae family, e.g., Pru av 3 from Cherry (13), and Pru p 3, the major allergen from Peach (14-15). Lac s 1 also showed broad IgE cross-reactive properties with Walnut and Peanut extract (16), LTPs from Mugwort and Chestnut (17-18). Vit v 1 from Grape (19), Zea m 14 from Maize (20), Cor a 8 from Hazelnut (21), and Mal d 3 from Apple (22). Although the highest degree of sequence identity of the N-terminus of Lac s 1 was found with Mal d 3, only a single subject in the Lettuce-allergic group reported Apple allergy (7). The authors therefore postulated a lack of correlation between sequence identity and clinical cross-reactivity (7-8).

RAST inhibition demonstrated that Carrot does share allergens with Lettuce, although Carrot allergens are more potent than those of Lettuce (2).

One study concludes that cross-reactivity was observed between Platanus acerifolia pollen and plant-derived foods. OAS in these patients may have been caused by primary respiratory sensitisation to Plane tree pollen, and the authors propose profilin as the cause.

Approximately 22% of the Spanish patients with Plane tree pollen allergy and food allergy had allergy to vegetables, including Lettuce (23).

Molecular Aspects

Clinical Experience

IgE-mediated reactions

Lettuce allergy is not frequently reported in the literature, but is found in clinical practice, predominantly in the southern part of Europe (8). Lettuce may induce symptoms of food allergy, in particular oral allergy syndrome, in sensitised individuals (1-5,7-8,12,23-24). Adverse reactions may be severe, resulting in anaphylaxis (7). Lettuce and Carrot can account for clinically significant IgE-mediated allergic reactions, including prolonged nasal obstruction (25). This finding is supported by a Mexican study, in which, among 1,419 allergic patients aged between 1 and 18 years, 442 (31%) had positive skin prick test (SPT) results to 1 or more among 33 tested foods. Fish, milk, seafood, beans, Orange, Onion, Tomato, Chicken, nuts, Lettuce and Strawberry were responsible for 58% of the total of allergic reactions. Of those, fish, milk, seafood, Soy and Orange (39%) had the highest frequency (26).

In a study of 29 Lettuce-allergic patients, with or without concomitant Peach allergy, and 19 Peach-allergic patients without Lettuce allergy, it was concluded that the data provided indirect evidence that Pru p 3, a lipid transfer protein, might act as the primary sensitising agent in patients allergic to both Lettuce and Peach. Of those with Lettuce allergy, anaphylaxis was reported in 15, gastrointestinal symptoms in 2, OAS in 8, urticaria in 3, and angioedema in 3. Skin prick testing was positive in 17, and prick to prick testing in 18, (a number of SPT-positive cases were prick to prick-negative, and vice versa); IgE antibody levels for Lettuce were negative in 7, and for nLac s 1 negative in 2 but positive in 27 of the 29 (8).

A study of 14 patients with allergy to Lettuce described how all were sensitised to Platanus pollen. Ten were allergic to a lipid transfer protein in Lettuce. Fifty percent of the subjects experienced anaphylaxis to Lettuce. Symptoms of oral allergy syndrome was followed by more severe symptoms in the majority of cases. Lac s 1, the lipid transfer protein, was the responsible allergen (7).

A 42-year-old female presented with widespread erythema with pruritus after ingesting “Tudela” lettuce hearts (Lactuca sativa var.). She experienced an anaphylactic shock episode a few days later after eating the Lettuce hearts dressed with Olive oil. She had concomitant seasonal rhinitis, which coincided with the pollination of Platanus acerifolia. Skin prick tests were positive to “Tudela” lettuce heart, Lettuce, endive, pollen from P. acerifolia and Artemisia vulgaris; but negative to Leek, Potato, Carrot and Latex. In spite of her tolerating the ingestion of Leeks, Potatoes and Carrots, presence of IgE antibodies to these foods was demonstrated (3).

However, IgE antibodies may be found in asymptomatic patients. Skin-sensitising allergens have been identified, but reactions do not appear to be IgE-mediated (27).

Food-dependent exercise-induced anaphylaxis has been reported (28-29).

Generalised, pruritic, papular and erythematous eruption, associated with facial and lingual oedema and a tight throat, due to Lettuce, has been documented in a patient (1).

Previously unsuspected Lettuce allergy in a patient with delayed metal allergy has been reported (30).

Other reactions

Occupational eczema or contact dermatitis, combining delayed and immediate-type reactions, has been reported (11,31-34), including contact hypersensitivity to Lettuce in a chef (35). A 35-year-old woman complained of an itchy rash on her fingers, which occurred for the first time 3 months after commencing work at a vegetable packing plant. The rash then spread to her arms and neck. Despite a negative standard battery, targeted patch testing revealed Lettuce as the offending agent (36).

Greenhouse workers and gardeners are at risk of Compositae-related allergy to Chrysanthemum (Dendranthema), Daisy (Argyranthemum frutescens) and Lettuce (Lactuca sativa) (37-38). Ingestion of Lettuce was reported to result in lip and facial swelling, and in aggravation of pre-existing Compositae dermatitis (39).

Other substances, including allergens, may be present that result in adverse effects. Powdered Latex glove use in salad preparation may result in measurable amounts of Latex protein on Lettuce, with an exposure-dependent increase in the Latex protein levels (40). Sulphite-treated Lettuce (sulphite is used as a preservative) is capable of provoking bronchospasm in sulphite-sensitive asthmatics and may be a cause of restaurant-provoked asthma in these individuals (41).

Lettuce contains high levels of naturally occurring nitrates (42-43).

Compiled By

Last reviewed: June 2022.

References
  1. Vila L, Sanchez G, Sanz ML, Dieguez I, Martinez A, Palacios R, Martinez J. Study of a case of hypersensitivity to lettuce (Lactuca sativa). Clin Exp Allergy 1998;28(8):1031-5
  2. Helbling A, Schwartz HJ, Lopez M, Lehrer SB. Lettuce and carrot allergy: are they related? Allergy Proc 1994;15(1):33-8
  3. Olive-Perez A, Pineda F. Anaphylactic reaction to ’Tudela’ lettuce hearts.
    Allergy 2003;58(11):1205-6
  4. Franck P, Kanny G, Dousset B, Nabet P, Moneret-Vautrin DA. Lettuce allergy.
    Allergy 2000;55(2):201-2
  5. Escudero A, Bartolome B, Sanchez-Guerrero IM, Palacios R. Lettuce and chicory sensitization. Allergy 1999;54(2):183-4
  6. Cadot P, Kochuyt AM, Deman R, Stevens EA.
    Inhalative occupational and ingestive immediate-type allergy caused by chicory (Cichorium intybus).
    Clin Exp Allergy 1996;26(8):940-4
  7. San Miguel-Moncin M, Krail M, Scheurer S, Enrique E, Alonso R, Conti A, Cistero-Bahima A, Vieths S. Lettuce anaphylaxis: identification of a lipid transfer protein as the major allergen. Allergy 2003;58(6):511-7
  8. Hartz C, San Miguel-Moncin MM, Cistero-Bahima A, Fotisch K, Metzner KJ, Fortunato D, Lidholm J, Vieths S, Scheurer S. Molecular characterisation of Lac s 1, the major allergen from lettuce (Lactuca sativa).
    Mol Immunol 2007;44(11):2820-30
  9. Yman L. Botanical relations and immunological cross-reactions in pollen allergy. 2nd ed. Pharmacia Diagnostics AB. Uppsala. Sweden. 1982: ISBN 91-970475-09
  10. Garcia Ortiz JC, Cosmes PM, Lopez-Asunsolo A. Allergy to foods in patients monosensitized to Artemisia pollen. Allergy 1996;51(12):927-31
  11. Krook G. Occupational dermatitis from Lactuca sativa (lettuce) and Cichorium (endive).
    Contact Dermatitis 1977;3(1):27-36
  12. Asero R, Mistrello G, Roncarolo D, Amato S. Detection of some safe plant-derived foods for LTP-allergic patients.
    Int Arch Allergy Immunol 2007;144(1):57-63
  13. Scheurer S, Pastorello EA, Wangorsch A, Kastner M, Haustein D, Vieths S. Recombinant allergens Pru av 1 and Pru av 4 and a newly identified lipid transfer protein in the in vitro diagnosis of cherry allergy.
    J Allergy Clin Immunol 2001;107(4):724-31
  14. Lleonart R, Cistero A, Carreira J, Batista A, Moscoso del Prado J. Food allergy: identification of the major IgE-binding component of peach (Prunus persica).
    Ann Allergy 1992;69(2):128-30
  15. Pastorello EA, Farioli L, Pravettoni V, Ortolani C, Ispano M, Monza M, Baroglio C, Scibola E, Ansaloni R, Incorvaia C, Conti A. The major allergen of peach (Prunus persica) is a lipid transfer protein. J Allergy Clin Immunol 1999;103(3 Pt 1):520-6
  16. Asero R, Mistrello G, Roncarolo D, Amato S,
    Caldironi G, Barocci F, Van Ree R. Immunological cross-reactivity between lipid transfer proteins from botanically unrelated plant-derived foods: a clinical study.
    Allergy 2002;57(10):900-6
  17. Pastorello EA, Pravettoni V, Farioli L, Rivolta F, Conti A, Ispano M, Fortunato D, Bengtsson A, Bianchi M. Hypersensitivity to mugwort (Artemisia vulgaris) in patients with peach allergy is due to a common lipid transfer protein allergen and is often without clinical expression. J Allergy Clin Immunol 2002;110(2 Pt 1):310-7
  18. Diaz-Perales A, Lombardero M, Sanchez-Monge R, Garcia-Selles FJ, Pernas M, Fernandez-Rivas M, Barber D, Salcedo G. Lipid-transfer proteins as potential plant panallergens: cross-reactivity among proteins of Artemisia pollen, Castanea nut and Rosaceae fruits, with different IgE-binding capacities. Clin Exp Allergy 2000;30(10):1403-10
  19. Pastorello EA, Farioli L, Pravettoni V, Ortolani C, Fortunato D, Giuffrida MG, Perono Garoffo L, Calamari AM, Brenna O, Conti A. Identification of grape and wine allergens as an endochitinase 4, a lipid-transfer protein, and a thaumatin.
    J Allergy Clin Immunol 2003;111(2):350-9
  20. Pastorello EA, Farioli L, Pravettoni V, Ispano M, Scibola E, Trambaioli C, et al The maize major allergen, which is responsible for food-induced allergic reactions, is a lipid transfer protein.
    J Allergy Clin Immunol 2000;106(4):744-51
  21. Pastorello EA, Vieths S, Pravettoni V, Farioli L, Trambaioli C, et al. Identification of hazelnut major allergens in sensitive patients with positive double-blind, placebo-controlled food challenge results.
    J Allergy Clin Immunol 2002;109(3):563-70
  22. Sanchez-Monge R, Lombardero M, Garcia-Selles FJ, Barber D, Salcedo G. Lipid-transfer proteins are relevant allergens in fruit allergy. J Allergy Clin Immunol 1999;103(3 Pt 1):514-9
  23. Enrique E, Cistero-Bahima A, Bartolome B, Alonso R, San Miguel-Moncin MM, Bartra J, Martinez A. Platanus acerifolia pollinosis and food allergy. Allergy 2002;57(4):351-6
  24. Alonso R, Enrique E, Pineda F, Basagaña M, San Miguel-Moncín MM, Bartra J, Palacios R,
    Cisteró-Bahíma A. An observational study on outgrowing food allergy during non-birch pollen-specific, subcutaneous immunotherapy. Int Arch Allergy Immunol 2007;143(3):185-9
  25. Schwartz HJ, Arnold JL, Strohl KP. Nasal response to carrot and lettuce challenge in allergic patients. Ann Allergy Asthma Immunol 1995;74(2):152-4
  26. Avila Castanon L, Perez Lopez J, del Rio Navarro BE, Rosas Vargas MA, Lerma Ortiz L, Sienra Monge JJ. Hypersensitivity detected by skin tests to food in allergic patients in the Hospital Infantil de Mexico Federico Gomez. [Spanish] Rev Alerg Mex 2002;49(3):74-9
  27. Hausen BM, Andersen KE, Helander I, Gensch KH. Lettuce allergy: sensitizing potency of allergens.
    Contact Dermatitis 1986;15(4):246-9
  28. Romano A, Di Fonso M, Venuti A, Palmieri V, Zeppilli P. Food-dependent exercise-induced anaphylaxis: report of two cases.
    Int J Sports Med. 1992;13(8):585-7
  29. Romano A, Di Fonso M, Giuffreda F, Quaratino D, Papa G, Palmieri V, Zeppilli P, Venuti A. Diagnostic work-up for food-dependent, exercise-induced anaphylaxis.
    Allergy 1995;50(10):817-24
  30. Fregert S, Sjoborg S. Unsuspected lettuce immediate allergy in a case of delayed metal allergy. Contact Dermatitis 1982;8(4):265
  31. Veien NK, Hattel T, Justesen O, Norholm A. Causes of eczema in the food industry.
    Derm Beruf Umwelt 1983;31(3):84-6
  32. Alonso MD, Martin JA, Cuevas M, Parra F, Lezaun A, Conde Salazar L, Guimaraens MD, Losada E. Occupational protein contact dermatitis from lettuce.
    Contact Dermatitis 1993;29(2):109-10
  33. Helander I. Contact dermatitis to lettuce. Contact Dermatitis 1984;11(4):249
  34. Jovanović M, Poljacki M. Compositae dermatitis. [Croatian] Med Pregl 2003;56(1-2):43-9
  35. Mitchell D, Beck MH, Hausen BM. Contact sensitivity to lettuce in a chef.
    Contact Dermatitis 1989;20(5):398-9
  36. Gottschalk G, Todd G. Lettuce allergy. Current Allergy and Clinical Immunology 2005;18(3):144-6
  37. Paulsen E, Sogaard J, Andersen KE. Occupational dermatitis in Danish gardeners and greenhouse workers (III). Compositae-related symptoms.
    Contact Dermatitis 1998;38(3):140-6
  38. Paulsen E, Andersen KE, Hausen BM. Sensitization and cross-reaction patterns in Danish Compositae-allergic patients.
    Contact Dermatitis 2001;45(4):197-204
  39. Oliwiecki S, Beck MH, Hausen BM. Compositae dermatitis aggravated by eating lettuce.
    Contact Dermatitis 1991;24(4):318-9
  40. Beezhold DH, Reschke JE, Allen JH, Kostyal DA, Sussman GL. Latex protein: a hidden ”food” allergen?
    Allergy Asthma Proc 2000;21(5):301-6
  41. Howland WC 3rd, Simon RA. Sulfite-treated lettuce challenges in sulfite-sensitive subjects with asthma. J Allergy Clin Immunol 1989 Jun;83(6):1079-82
  42. Petersen A, Stoltze S. Nitrate and nitrite in vegetables on the Danish market: content and intake. Food Addit Contam 1999;16(7):291-9
  43. Rostkowski J, Borawska M, Omieljaniuk N, Otlog K. Content of nitrates and nitrites in early vegetables and potatoes sold in the marketplace of Bialystok in the year 1992. [Polish] Rocz Panstw Zakl Hig 1994;45(1-2):81-7