Oral food allergy symptoms and anaphylaxis
Different mammalian meat products may trigger allergic reactions. Worldwide patients have reported delayed urticarial or anaphylactic reactions, which occurred 2 - 6 hrs after ingestion of red meat such as beef, pork, lamb, rabbit, horse, and kangaroo. In sensitized individual consumption of porks kidney lead to severe allergic symptoms within a short time after ingestion in comparison to skeletal muscle meat of mammals. Also, 100% sensitivity was reported in a prick to prick test using raw or cooked pork kidney in comparison to raw pork (42-63%) (7). The galactose- α -1,3-galactose (α -Gal) is found to be responsible for delayed-type I anaphylactic reactions after eating red meat especially pork (12).
A study by Morisset et al. (2012) evaluated the association of anaphylaxis to α-Gal allergen-specific IgE in 14 patients who showed anaphylactic reactions after consumption of pork or beef kidney. The result showed that allergic reactivity to kidney is higher than mammalian meat. Anaphylaxis was usually severe (12 anaphylactic shocks) and four patients reported a loss of consciousness. Anaphylaxis occurred within 10 min to 5 h of eating pork kidney with immediate anaphylaxis observed in nine patients and semi-delayed anaphylaxis in four patients (14).
A study analyzed 25 German patients (median age 56 years) with a history of allergy to pork kidney (at least 1 allergic reaction) and reported that consumption of pork kidney led to anaphylactic reactions in 72% of patients (among them 56% belonged to grade II and 44% to grade III) and 28% patients showed urticaria/angioedema but no extracutaneous symptoms. The type I allergic reactions to α-Gal was categorized into two subtypes according to the time between pork kidney consumption and the beginning of the symptoms. They were immediate type I reaction occurring within 3 hours and delayed-type I reaction occurring within 3 to 6 hours. The majority of the patients (67%; 21 out of 25) in this study showed immediate type I reaction (12).
A case study of a 79-year-old female with no history of meat allergy reported severe anaphylaxis within 3 hours of eating pork. Allergen identified was α-Gal. Also, the patient had reported tick bite and tick is known to carry α-Gal (17).
Another case study reported about a 16-year-old girl with allergic symptoms such as repeated episodes of itching, angioedema of lips and oral mucosa occurring few minutes after consumption of pork meat (salami, both raw and cooked ham and bacon). However, she tolerated cooked pork (chops and sausages). She had a history of moderate rhino-conjunctivitis and gastrointestinal (GI) symptoms on exposure to horse dander and after drinking fresh milk respectively. The patient had shown oral allergy syndrome (OAS) and the skin prick tests (SPT) were strongly positive for pork and horse dander (18).
Asthma
Cutting and handling pork meat can release aeroallergen into the breathing zone and may also expose the skin to the fluid. This may cause occupational rhinitis, occupational asthma, contact urticaria, and protein contact dermatitis in workers, butchers, cooks, and industry workers (15). A study by Jungewelter et al. (2018) assessed four slaughterhouse workers who were allergic to raw pork allergens and detected occupational rhinitis in two patients, occupational asthma in one patient and contact urticaria in one patient (15).
A case study by Donnay et al. (2006) showed that vapors of pig gut soaking water consisting of pig albumin, gamma globulin, and a 26- kDa protein are responsible for causing occupational asthma in a woman working in a pork-processing unit (19).
Animal farmers are at high risk to get exposed to organic dust (aeroallergens), which may trigger occupational airway disease. A study by Radon et al. (2001) found that among 6,156 animal (cattle, pig, poultry, sheep) farmers from four European countries, pig farmers had a maximum risk of developing occupational airway disease and symptoms related to asthma and allergies. Also, chronic phlegm was found in a higher percentage among these farmers (20). Another questionnaire-based study by Kimbell-Dunn et al. (1999) evaluated the prevalence of asthma and allergic symptoms in 2,500 farmers from New Zealand. The study found out that asthma prevalence was high; about 18.2% among pig farmers and also females were more prone to report asthma compared to males (16).