Kits de ensayos de ADNds Qubit™ de ensayo
Kits de ensayos de ADNds Qubit™ de ensayo
Invitrogen™

Kits de ensayos de ADNds Qubit™ de ensayo

Para la detección altamente selectiva de ADNbc sobre ARN, incluso en presencia de contaminantes. Los kits de ensayo de ADNbc de Qubit tienen una precisión de 10 pg/ul a 100 ng/ul y de 100 pg/ul a 1000 ng/ul, respectivamente.
Have Questions?
Cambiar vistabuttonViewtableView
Número de catálogoCantidadensayoIntervalo de cuantificación
Q32851100 assaysCuantificación de ADNds, alta sensibilidad0,1-120 ng
Q32850100 assaysCuantificación de ADNds, rango amplioDe 4 a 2000 ng
Q32854500 assaysCuantificación de ADNds, alta sensibilidad0,1-120 ng
Q32853500 assaysCuantificación de ADNds, rango amplioDe 4 a 2000 ng
Número de catálogo Q32851
Precio (CLP)
134.654
Each
Añadir al carro de la compra
Cantidad:
100 assays
ensayo:
Cuantificación de ADNds, alta sensibilidad
Intervalo de cuantificación:
0,1-120 ng
Recurring order eligible. Learn more »
Precio (CLP)
134.654
Each
Añadir al carro de la compra
Ask our AI about this Product
Obtenga una cuantificación exacta y precisa del ADNbc con los kits de ensayo Qubit de ADNbc HS (alta sensibilidad) y de ADNbc BR (gama amplia) de Qubit. Estos kits de cuantificación de ADNbc permiten la detección rápida y selectiva de muestras de ADN de baja y alta abundancia, y pueden distinguir ADNbc de ADNmc, ARN, proteínas y nucleótidos libres. Los contaminantes, como sales, disolventes o detergentes, se toleran bien.
Los kits de ensayos de ADNbc Qubit de ensayo BR y HS, diseñados para su uso con fluorímetros Qubit, son altamente selectivos para ADN bicatenario (ADNbc) sobre ADN monocatenario (ADNmc), ARN, proteínas y nucleótidos libres. Todos los kits proporcionan soluciones para el reactivo de ensayo concentrado, el tampón de dilución y los patrones de ADN prediluidos. Basta con diluir el reactivo mediante el tampón proporcionado, añadir la muestra (cualquier volumen entre 1 µl y 20 µl es aceptable) y leer la concentración con un fluorímetro de Qubit.

Kit de ensayos de ADNbc HS QBit
El kit de ensayos de ADNbc HS QBit (alta sensibilidad), cuando se utiliza con el fluorímetro QBit, proporciona un método preciso y selectivo para la cuantificación de muestras de ADN sensibles. Según el volumen de la muestra, el kit de ensayos está diseñado para ser exacto para concentraciones iniciales de muestras de ADN de 0,005 a 120 ng/µl, lo que proporciona un intervalo de detección de 0,1 a 120 ng.

Kit de ensayos de ADNbc BR de Qubit
El kit de ensayos de ADNbc BR de Qubit (gama amplia), cuando se utiliza con el fluorímetro de Qubit, proporciona un método preciso y selectivo para la cuantificación de muestras de ADN. Según el volumen de la muestra, el kit de ensayo está diseñado para ser exacto para concentraciones iniciales de muestras de ADN de 0,2 a 2000 ng/µl, lo que proporciona un intervalo de detección de 4 a 2000 ng.

Notas
• Los kits de ensayo Qubit dsDNA HS y BR se pueden utilizar con cualquier fluorímetro Qubit
• Utilícelo con tubos para PCR de pared fina, transparentes y 0,5 ml (n.º de referencia Q32856) para el fluorímetro Qubit 4 y las tiras de tubos de 8 x 200 µl (n.º de referencia Q33252) para el fluorímetro Qubit Flex

For Research Use Only. Not for use in diagnostic procedures.
Especificaciones
ensayoCuantificación de ADNds, alta sensibilidad
Excitación/emisión510/527
Para utilizar con (equipo)Fluorímetro Qubit
N.º de reacciones100 reacciones
Línea de productosQubit
Intervalo de cuantificación0,1-120 ng
Cantidad100 assays
Condiciones de envíoTemperatura ambiente
Método de detecciónFluorescencia
Unit SizeEach

Enhance your Qubit Fluorometer with the latest firmware

New Qubit 4 and Qubit Flex firmware features include importing sample IDs, renaming files before exporting, a countdown timer, and on-board troubleshooting guidance. Get the most out of your Qubit assays with these powerful new tools.

Download the latest Qubit firmware ›

Have questions about this product? Ask our AI assisted search.
This is an AI-powered search and may not always get things right. You can help us make it better with a thumbs up or down on individual answers or by selecting the “Give feedback" button. Your search history and customer login information may be retained by Thermo Fisher and processed in accordance with our Privacy Notice.

Los clientes que vieron este artículo también vieron



Documentos y descargas

Certificados

N.º de loteCertificate TypeDateCatalog Number(s)
3192621Certificate of Analysis29 jun 2025Q32854
3192621Certificate of Analysis29 jun 2025Q32854
3221070Certificate of Analysis29 jun 2025Q32851
3221070Certificate of Analysis29 jun 2025Q32851
3174501Certificate of Analysis29 jun 2025Q32853
Se muestran 5 resultados, busque arriba un certificado específico

Hojas de datos de seguridad

Preguntas frecuentes

Here are several suggestions:

1.View the raw fluorescence value (RFU) for the standards under “Check Standards” or “Check Calibration”. Confirm that the values for the samples fall between the values of the standards (or a little above the highest standard). If they do not, the sample is out of the accurate range of the assay. Refer to the confidence ranges for each assay in the product manuals. The readout in the assay will be to 2 significant figures instead of 3 if the assay sample is out of the high confidence range.
To bring the sample into the accurate range, dilute the sample or use more or less of it (for example, 10 µL instead of 2 µL if the sample reads low).

2.Check for temperature issues: The assay is temperature sensitive and the fluorescent signal can decrease at higher temperatures. Temperature fluctuations between samples, or between samples and standards, can cause problems. Make sure that the buffer and Qubit reagent in DMSO are at room temperature. The buffer and Qubit reagent should be stored at room temperature, not in the refrigerator. Even after 2-3 hours at room temperature, buffer previously stored at 4°C can remain below room temperature. Make sure your samples and working solution are not too warm (including those straight from a centrifuge). Samples kept in the Qubit instrument too long or read multiple times can warm up. If you want to perform multiple readings of a single tube, you should remove the tube from the instrument and let it equilibrate to room temperature for 30 seconds before taking another reading. Also, do not hold tubes in your hand for very long before reading them in the instrument, since this can warm the sample, resulting in a low reading.

3.Ensure that you have prepared the Qubit working solution correctly (1:200 dilution using the buffer provided in the kit). Ensure that you have prepared the standard tubes correctly (10 µL of each standard in 190 µL of the working solution). Ensure that the tubes are filled with at least 200 µL (both standards and samples).

4.Ensure that the reagents and standards you are using are less than 6 months old, and that the standards have been stored correctly. The Qubit reagent stock solution should be protected from light as much as possible.

5.Ensure that you have selected the correct assay on the Qubit Fluorometer for the Qubit assay you are performing.

6.Ensure that the lid is completely closed when reading standards and samples.

7.Use recommended tubes (both so the tube does not obstruct the lid, and for optical clarity). Some types of tubes can have high autofluorescence that will affect the assay.

8.Did you enter the number of microliters of stock you pipetted into the working solution into the Qubit instrument? If so, the reading after giving the Qubit Fluorometer this information is the concentration of your stock solution. If you did not, the reading you got is for the concentration in the assay tube (the tube you put into the Qubit Fluorometer) and not your stock solution.

9.If you are comparing Qubit assay results to concentration obtained by UV absorbance, and the concentration based on absorbance is significantly higher, it may be because of nucleic acid or protein contamination. The Qubit assays are much more specific for DNA, RNA, or protein than absorbance readings.

Please see our suggestions below:

  • Make sure that you take your reading only after incubating for at least 2 minutes (15 minutes for protein).
  • If you leave the assay tube in the Qubit Fluorometer and take multiple readings, the readings will go down as the tube heats up inside the instrument. If you want to take multiple readings, remove the tube from the instrument, place it in a tube rack, and allow it to equilibrate to room temperature for at least 30 seconds before rereading the tube.
  • You may read the sample up to 3 hours after mixing if it is protected from light. After this time, the reading will not be accurate.
  • Keep standards and sample tubes in the dark and protected from light in between readings.

    Find additional tips, troubleshooting help, and resources within ourNucleic Acid Quantification Support Center.

  • PicoGreen dye and other fluorescence-based quantification reagents are not recommended for quantifying dye-conjugated nucleic acids. The attached dye molecules can interfere with either binding and/or fluorescence output of the quantification reagents.

    Strands that are roughly in the 20-mer range or shorter show a lower level of signal. For dsDNA samples that are composed of mostly short strands, the reagent may still be used, but one should use a dsDNA standard that is of comparable length as the sample.

    Find additional tips, troubleshooting help, and resources within our Nucleic Acid Quantification Support Center.

    The Qubit Fluorometer contains highly optimized algorithms that calculate the concentration of the sample using either the Qubit assays or the Quant-iT DNA assays. The Quant-iT PicoGreen DNA assay may be adapted to the Qubit Fluorometer using the MyQubit firmware. The performance of all of these assays is similar.

    The Quant-iT PicoGreen DNA assay is the most established assay and the most general-purpose (http://tools.thermofisher.com/content/sfs/manuals/PicoGreen-dsDNA-protocol.pdf). It requires the dilution of the standard DNA and buffer but can be adapted for use with either cuvettes, microplates, or the NanoDrop 3300.

    The Quant-iT DNA assays provide a ready-to-use buffer and pre-diluted standard DNA for analyzing a large number of samples (>20 samples) using a 96-well microplate with no further adaptation.

    The Qubit assays (https://www.thermofisher.com/us/en/home/industrial/spectroscopy-elemental-isotope-analysis/molecular-spectroscopy/fluorometers/qubit/qubit-assays/myqubit.html) are intended for low throughput (<20 samples), and are only used on the Qubit Fluorometer.

    Find additional tips, troubleshooting help, and resources within our Nucleic Acid Quantification Support Center.

    Citations & References (59)

    Citations & References
    Abstract
    Tn5 transposase and tagmentation procedures for massively scaled sequencing projects.
    Authors:Picelli S, Björklund AK, Reinius B, Sagasser S, Winberg G, Sandberg R
    Journal:Genome Res
    PubMed ID:25079858
    Massively parallel DNA sequencing of thousands of samples in a single machine-run is now possible, but the preparation of the individual sequencing libraries is expensive and time-consuming. Tagmentation-based library construction, using the Tn5 transposase, is efficient for generating sequencing libraries but currently relies on undisclosed reagents, which severely limits development ... More
    A systematic evaluation of whole genome amplification of bisulfite-modified DNA.
    Authors:Bundo M, Sunaga F, Ueda J, Kasai K, Kato T, Iwamoto K,
    Journal:Clin Epigenetics
    PubMed ID:23174095
    'Studying DNA methylation profiles in detail should be the first step in epigenetic research. Although sodium bisulfite modification of genomic DNA is the gold standard method for DNA methylation analysis, this method results in the loss of the majority of the DNA material. Whole genome amplification (WGA) of bisulfite-modified DNA ... More
    Molecular detection and species identification of Alexandrium (Dinophyceae) causing harmful algal blooms along the Chilean coastline.
    Authors:Jedlicki A, Fernández G, Astorga M, Oyarzún P, Toro JE, Navarro JM, Martínez V,
    Journal:AoB Plants
    PubMed ID:23259043
    'On the basis of morphological evidence, the species involved in South American Pacific coast harmful algal blooms (HABs) has been traditionally recognized as Alexandrium catenella (Dinophyceae). However, these observations have not been confirmed using evidence based on genomic sequence variability. Our principal objective was to accurately determine the species of ... More
    Cell contact-dependent priming and Fc interaction with CD32+ immune cells contribute to the TGN1412-triggered cytokine response.
    Authors:Bartholomaeus P, Semmler LY, Bukur T, Boisguerin V, Römer PS, Tabares P, Chuvpilo S, Tyrsin DY, Matskevich A, Hengel H, Castle J, Hünig T, Kalinke U,
    Journal:
    PubMed ID:24470499
    'Following inconspicuous preclinical testing, the superagonistic anti-CD28 mAb TGN1412 was applied to six study participants who all developed a devastating cytokine storm. We verified that TGN1412 treatment of fresh PBMCs induced only moderate responses, whereas restoration of tissue-like conditions by high-density preculture (HDC) allowed vigorous cytokine production. TGN1412 treatment of ... More
    High transcript level of fatty acid-binding protein 11 but not of very low-density lipoprotein receptor is correlated to ovarian follicle atresia in a teleost fish (Solea senegalensis).
    Authors:Agulleiro MJ, André M, Morais S, Cerdà J, Babin PJ,
    Journal:Biol Reprod
    PubMed ID:17554079
    'Transcripts encoding a fatty acid-binding protein (FABP), Fabp11, and two isoforms of very low-density lipoprotein receptor (Vldlr; vitellogenin receptor) were characterized from the ovary of Senegalese sole (Solea senegalensis). Phylogenetic analyses of vertebrate FABPs demonstrated that Senegalese sole Fabp11, as zebrafish (Danio rerio) homologous sequences, is part of a newly ... More
    59 total citations

    Compartir número de catálogo, nombre o enlace.

    1x1 image pixel for data collection