Create physiologically relevant cell culture models with HPLM

 

Gibco Human Plasma-like Medium (HPLM) is formulated to resemble the natural cellular environment found in the body, mimicking the metabolic profile of human plasma. 

 

Widely used, synthetic cell culture media, including MEM, DMEM, RPMI 1640, and DMEM/F-12 contain glucose, amino acids, vitamins, and salts at concentrations that, in large part, do not reflect those found in human plasma. These media also lack additional plasma components needed to mimic the metabolic profile of human plasma. When studying cancer and other diseases, results with more physiological relevance will enable researchers to help improve their understanding of human function and illness.

The HPLM solution

Gibco HPLM contains the same salt concentrations found in human plasma, as well as the same concentrations of over 60 polar metabolites, such as amino acids, nucleic acids, sugars, and small organic acids. In resembling the natural cellular environment found in the body, HPLM helps provide researchers the ability to study the impact of physiologically relevant cell media on their specific applications.

 

HPLM supplemented with fetal bovine serum (FBS) can support cell growth and viability comparable to those of conventional FBS-supplemented basal media formulations. For most cell lines, adaptation is not required to transition from conventional medium to HPLM.

 

HPLM is beneficial to your cell culture experiments in several ways:

  • Physiologically relevant—formulated with more than 60 polar metabolites and salt concentrations that resemble the natural cellular environment found in the body
  • Peer reviewed—extensive research publications completed using HPLM formulation
  • Easy to use—direct replacement for your current media when supplemented with FBS

Meet the inventor of HPLM

The inventor of human plasma-like medium is Jason R. Cantor.

 

As a postdoc at the Whitehead Institute/MIT in Cambridge, Jason set out to create what would become human plasma-like medium (HPLM), a physiologic medium designed to more closely reflect the metabolic composition of human blood, thus permitting the study of cultured cells in biochemical conditions with greater relevance to human physiology.

 

Cantor reported his development and initial studies using HPLM in early 2017 (Cell). Read his publication here: Physiologic Medium Rewires Cellular Metabolism and Reveals Uric Acid as an Endogenous Inhibitor of UMP Synthase.

We are proud to work with Jason to bring this innovation to market, and excited by the immense possibilities that HPLM could bring across diverse areas of the scientific community. As Jason notes, "The recent development of physiologic media, like other efforts designed to address the modeling capacity of cell culture, holds immense potential to improve understanding and interpretation of diverse biological and pharmacological studies." Read more from his 2019 commentary here: The Rise of Physiologic Media .

 

Jason is listed as an inventor on a patent application for HPLM assigned to Whitehead Institute.


Research results using HPLM

Research has shown that cellular performance is impacted by the use of HPLM, indicating that physiologic media can help increase the relevance of results from physiological studies.

 

HPLM rewires cellular metabolism

Graphical abstract summary: “Among the most prominent was an inhibition of de novo pyrimidine synthesis—an effect traced to uric acid, which is 10-fold higher in the blood of humans than of mice and other non-primates. We find that uric acid directly inhibits uridine monophosphate synthase (UMPS) and consequently reduces the sensitivity of cancer cells to the chemotherapeutic agent 5-fluorouracil. Thus, media that better recapitulates the composition of human plasma reveals unforeseen metabolic wiring and regulation, suggesting that HPLM should be of broad utility.”

 

Reproduced with permission from: Cantor JR, Abu-Remaileh M, Kanarkek N et al. (2017) Physiologic medium rewires cellular metabolism and reveals uric acid as an endogenous inhibitor of UMP synthase. Cell 169: 258–272.E17. doi: 10.1016/j.cell.2017.03.023

HPLM improves T lymphocyte activation

Graphical abstract summary: “Among the most prominent was an inhibition of de novo pyrimidine synthesis—an effect traced to uric acid, which is 10-fold higher in the blood of humans than of mice and other non-primates. We find that uric acid directly inhibits uridine monophosphate synthase (UMPS) and consequently reduces the sensitivity of cancer cells to the chemotherapeutic agent 5-fluorouracil. Thus, media that better recapitulates the composition of human plasma reveals unforeseen metabolic wiring and regulation, suggesting that HPLM should be of broad utility.”

 

Reproduced with permission from: Cantor JR, Abu-Remaileh M, Kanarkek N et al. (2017) Physiologic medium rewires cellular metabolism and reveals uric acid as an endogenous inhibitor of UMP synthase. Cell 169: 258–272.E17. doi: 10.1016/j.cell.2017.03.023

Recent publications using HPLM

Order Gibco HPLM

GMP manufacturing

Gibco cell culture products are manufactured in facilities compliant with current good manufacturing practices (GMP) and adhere to a robust quality management system, helping to ensure the consistency, reliability, and high quality you can rely on.
 

Sustainable solutions

We are committed to delivering products that serve the research needs of our customers, while striving to develop them in a way that minimizes our use of natural resources and our impact on the environment.
 

Are you needing to find more information about HPLM?

Resources and support

Resources

Gibco Media Selection Tool
Find the right Gibco media for your application.  Use this interactive tool to select media based upon culture type, components, additives, and format. 

 

Cell Culture Select Tool
Search your cell line of interest to find product recommendations and resources to help enable a successful cell culture.

 

Gibco Cell Culture Basics
Learn best practices and fundamentals of cell culture. Topics include aseptic technique and methods for the growth and maintenance of cells in culture.

 

Cell Culture Videos
Explore this collection of cell culture videos providing valuable insights into techniques, resources, and the latest advancements in the field.

 

Cell Culture & Transfection Learning Center
Access cell culture and transfection educational resources for better experiment planning and execution.

Support

Cell Culture & Transfection Support Center
Find technical support recommendations for your cell culture and transfection workflows, including tips for experimental setup and in-depth troubleshooting help.

 

Need technical support? Contact our expert team for technical and application support of Laboratory Products.

 

Related products

 

For Research Use Only. Not for use in diagnostic procedures.

1x1 image pixel for data collection